Симбиоз грибов и животных

Содержание
  1. Грибы – короли симбиоза
  2. Грибы и деревья
  3. Лишайники
  4. Грибы и орхидеи
  5. Грибы и фауна
  6. Грибы-симбионты: примеры
  7. Грибы-симбионты
  8. Процесс симбиоза
  9. Многообразие грибов-симбионтов
  10. Особенности организма симбионта
  11. Идеальный симбионт
  12. Интересные факты о грибах-симбионтах
  13. Польза симбиоза
  14. Заключение
  15. Удивительный симбиоз: грибы-паразиты и муравьи-зомби
  16. Грибок превращает насекомых в зомби
  17. Грибы-паразиты в России
  18. Как появляются пауки-зомби?
  19. Самые необычные примеры симбиоза между животными и бактериями
  20. Тля
  21. Древесные крысы
  22. Глубоководные моллюски
  23. Синекольчатый осьминог
  24. Гавайский кальмар бобтейл
  25. Как грибы вступают в симбиоз: примеры микоризы с корнями деревьев, водорослями и другими организмами
  26. Лишайники: в чем проявляется симбиоз грибов и водорослей
  27. Симбиоз грибов с насекомыми
  28. Симбиозы у растений
  29. Желательно и обязательно
  30. Совместная жизнь
  31. Сотрапезники
  32. Древесные помогают друг другу

Грибы – короли симбиоза

Симбиоз грибов и животных

Грибы, представляющие отдельное природное царство, по праву можно назвать королями симбиоза. Объединяя в себе некоторые признаки животных и растений, грибы успешно сотрудничают и с первыми, и со вторыми. Сегодня мы расскажем о типичных и наиболее интересных примерах «сотрудничества» грибов с другими организмами.

Грибы и деревья

Самый часто встречающийся вид симбиоза у грибов – с высшими растениями. Грибница и корень дерева срастаются в единый грибокорень. Благодаря такому объединению гриб получают от растений углеводы, которые те способны вырабатывать. А деревья, в свою очередь, употребляют легкорастворимые минеральные вещества, которые мицелий вытягивает из почвы и перерабатывает в удобную форму. [1]

Одни грибы сотрудничают с несколькими видами деревьев. Например, белый гриб прекрасно уживается с пятьюдесятью деревьями. [2] Осенние опята одаривают своей благосклонностью около 200 видов деревьев. [3] А вот деликатесные рыжики весьма избирательны. Они растут только в «дружбе» с елями и в соснами. Называются соответственно – еловый и сосновый. [4]

Лишайники

Когда в следующий раз поедете в лес, присмотритесь к лишайникам. Эти необычного вида образования смотрятся весьма цельно, но не являются единым организмом. Лишайник — симбиотическая ассоциация – крепкая пожизненная «дружба» грибов и водорослей. Грибы дают водорослям среду, в которой они могут выжить. Водоросли же отдают продукты своего фотосинтеза.

Примечательно, что лишайники образуются лишь при скудном питании, увлажнении и освещении. Улучшенные условия существования приведут к гибели лишайника – связи симбионтов разрушаются, водоросли начинают жить самостоятельно, а грибы могут не выжить. [5] Но пока они вместе, у них все отлично.

И не говорите, что вам не случалось хотя бы раз в жизни залюбоваться их почти инопланетной красотой.


Грибы и орхидеи

Отношения грибов с орхидеями и вовсе отдельная тема.

Ведь некоторые орхидеи не просто извлекают выгоду из этого симбиоза, а буквально не могут без него жить! В зрелых семенах орхидей отсутствуют углеводы – источник энергии для деления клеток и, соответственно, развития семени в растение. А в течение жизни грибы доставляют орхидеям воду и минеральные соли. Что от этого взаимодействия выигрывают сами грибы, ученые пока не выяснили.

Кстати, есть отдельная группа орхидей с особой «привязанностью» к грибам – гнездовки. Эти поразительные растения полностью лишены хлорофилла и не способны фотосинтезировать. Все, что им остается – питаться за счет гриба-симбионта. [6]

Микотизм – так называется тип питания растений, осуществляющийся за счет грибов, поселяющихся на корнях. [7]

Грибы и фауна

Те, кто читал, «Умные муравьи. Часть 2», уже знают, что муравьи разводят грибы, чтобы строить ловушки. Они заботливо переносят споры на новые места обитания.

Южноамериканские муравьи Atta пошли еще дальше. Они делают нечто вроде грядок в своих гнездах. Пережевывая нежные части листьев, муравьи таким образом готовят субстрат для произрастания грибов, которые составляют их единственную пищу.

Сначала муравьи кормят и выращивают продукцию в своем грибном саду, а затем поедают ее. Подобными агрономическими изысканиями также занимаются муравьи Apterostigma и Cyphomyrmex. Термиты – самые знатные грибоводы.

Только в роде Termes есть более 30 видов, которые жить не могут без грибов. [8]

У некоторых представителей муравьев существуют настоящие висячие сады. Другие выращивают продукцию, напоминающую кольраби.

Представители муравьиного царства тщательно заботятся о своих грядках. Удобряют их останками насекомых и продуктами собственного пищеварения. Облизывают, чтобы слюна, содержащая антибиотики не позволяла развиваться сорнякам и вредным бактериям. Прищипывают грибницу. Кстати, в основу известного противогрибкового препарата «Нистатин» положены вещества из муравьиной слюны. [9]

Одно из интересных содружеств грибов – с североамериканским кокардовым дятлом. Дело в том, что это птица для строительства жилица выбирает себе не умирающие, а здоровые деревья.

Чтобы выдолбить дупло при таких условиях, дятлу может понадобиться до 10 лет. Хитрая птица переносит споры дереворазрушающих грибов в «ранки» коры.

Древесина становится более мягкой, что облегчает труд по обустройству нового гнезда.

Успешное сотрудничество грибов и дятлов обеспечивает жильем и других лесных обитателей, любящих селиться в дупле – насекомых, сов, змей, белок, певчих птиц. [10]

Многообразие симбиотических отношений, в которые вступают грибы, поразительно. Здесь описаны наиболее интересные случаи. Чтобы рассказать обо всех видах грибного симбиоза, потребуется издать целую книгу. Возможно, многотомник. =)

P.S.

Если вам понравилось, прочитайте и другие наши статьи о симбиозе различных организмов:

Их незабываемая улыбка
Дружелюбные актинии
Лосось и жемчужница – симбиоз, продлевающий жизнь
Умные муравьи. Часть 1: Симбиоз с растениями
Умные муравьи. Часть 2: Симбиоз с грибами, тлей и другими муравьями
Птицы-симбионты

Источник: https://xren.su/mushrooms-kings-of-symbiosis/

Грибы-симбионты: примеры

Симбиоз грибов и животных

Грибы-симбионты – одна из самых удивительных форм жизни. Существует много видов организмов, которые можно назвать симбионтами. Процесс симбиоза в природе имеет важное значение.

Особенности грибов-симбионтов

Грибы-симбионты

Грибы представляют собой уникальную по своим особенностям группу живых организмов нашей планеты. Их изучением занимается наука микология. Сегодня нас интересуют одни из самых распространенных представителей царства Грибы – те из них, что способны формировать симбиотические ассоциации с представителями царства Флоры.

Ирина Селютина (Биолог):

Современной науке известны следующие группы грибов по способу питания:

  1. Сапрофиты, или сапротрофы, или микроконсументы: используют для своего питания органические соединения мертвых тканей как растений так и животных. Они играют важную роль в биологическом круговороте веществ в биосфере.
  2. Паразиты: организмы, образ жизни которых очень тесно связан с представителями других видов, внутри или на поверхности тел которых они обитают, питаются и в большинстве случаев определенным образом вредят им.
  3. Симбионты: организмы разных видов, вступающие во взаимовыгодное сожительство.

Симбионты широко распространены по всему земному шару. Долгое время ученые не могли разгадать секрет грибов, вступающих в симбиотический союз, но им удалось это сделать.

Процесс симбиоза

Многие грибы вступают в симбиотические отношения с растением-хозяином. Они оплетают его корни своими гифами. Такое формирование получило название «микориза» или «грибокорень».

Микориза помогает грибам получать необходимые питательные вещества непосредственно из корней растения-хозяина: углеводы, кислород и углекислый газ. Хозяину это не вредит.

Грибница помогает ему получать полезные соединения из почвы, а также защищает от воздействия вредных микроорганизмов, выделяя в окружающую среду антибиотики.

Ирина Селютина (Биолог):

Микологи выделяют следующие виды микоризы, которые различаются по особенностям своего строения:

  • Эктотрофная: гифы гриба просто оплетают молоденький корень растения, формируя микоризные трубки или своеобразный чехол. При этом гифы хотя и проникают в ризодерму корня, но распространяются только по межклетникам, а в полость клетки не заходят. В случае формирования такого типа микоризы у растения атрофируются корневые волоски – их заменяют гифы гриба и происходит редукция корневого чехлика – его аналогично заменяют гифы, сформировавшие свой «чехлик». Происходит дееление корня на зоны с формированием сети Гартига.
  • Эндотрофная: гифы гриба проходят внутрь клетки коры корня через поры в ее оболочке и формируют там скопления, напоминающие клубки. При этом снаружи корня микориза слабо просматривается.
  • Эктоэндомикориза: представляет что-то среднее, сочетающее в себе признаки предыдущих видов микоризы.

Так формируется выгодный для обоих организмов союз.

Благодаря многочисленным экспериментам микологов в ряде стран, к 1953 г. уже было доказано существование взаимосвязи представителей различных древесных пород с 47 видами грибов, относящихся к 12 родам.

На сегодняшний день известно, о том, что более 600 видов грибов способны участвовать в формировании микоризы. Также оказалось, что каждый гриб может вступать в симбиотические отношения не с одной, а с несколькими породами деревьев.

Все рекорды побил сумчатый гриб, формирующий склероции – ценококкум зерновидный. Он в условиях эксперимента смог образовать микоризу с 55 видами древесных пород. Кстати.

Наиболее специализированным в отношении формировании микоризы является масленок лиственничный (подлиственничный), способный образовать микоризу только с кедровой сосной и лиственницей.

Примерно 90% всех растений на нашей планете вступают в симбиоз с грибами.

Многообразие грибов-симбионтов

Многие известные человеку съедобные и ядовитые организмы относятся к симбионтам:

  • белый (боровик);
  • подберезовик;
  • лисичка;
  • масленок;
  • рыжик;
  • подосиновик.

В числе ядовитых организмов симбионтами являются следующие:

  • поганки (белая, бледная, весенняя);
  • мухоморы (красный, поганковидный, пантерный);

Такие грибы не способны существовать без растений-хозяев,т.к. от них они получают все необходимые для них органические соединения, которые растения образуют в процессе фотосинтеза.

Особенности организма симбионта

Мухоморы встречаются в любых лесах

Особенностью таких организмов является своего рода избирательность. Примером этого может стать хорошо известный боровик, который не способен расти в ольховых или осиновых лесах. Обыкновенный мухомор формирует грибницу, которой не требуется определенный хозяин, поэтому его встречают в любых лесах. А вот рыжики и маслята привязаны только к хвойным деревьям.

Идеальный симбионт

Ценококкум – один из самых распространенных и в тоже время мало изученных грибов, образующих микоризу. Он есть как в Арктике, так и в тропических широтах. Наиболее часто он встречается в корнях растений, которые умеют выживать в экстремальных условиях. Формирует он эктомикоризу с огромным количеством голосеменных и покрытосеменных растений, а также частью папоротников.

Исследования выявили, что этот представитель грибного царства образует мало ферментов, разрушающих растительные ткани. Эти ферменты распространены в основном у обычных грибов, которые разлагают органику для определенных целей.

Ценококкум активно формирует белки, которые встраиваются в клетки растения-хозяина и перекачивают туда воду.

Поскольку такой тип белка активизируется во время засухи, то нет ничего удивительного в том, что деревья формируют симбиоз именно с этим организмом – он помогает им добывать воду в то время, когда ее крайне мало.

Интересные факты о грибах-симбионтах

Характерная особенность грибов, образующих микоризу, заключается в том, что их невозможно вырастить в искусственных условиях. Мицелий их способен находиться в почве,поглощать и передавать питательные вещества, но не будет формировать плодовые тела. Без определенной породы дерева такие грибы не плодоносят.

Растение-хозяин будет плохо расти, медленно развиваться, а в итоге погибнет, если в почве поблизости не будет гриба-симбионта. Примером тому являются саженцы сосны, растущие гораздо быстрее, если в грунт попали споры определенного вида гриба.

Иногда возникает симбиоз между грибами и муравьями. Насекомые питаются питательными гифами, создавая под землей целые «грибные фермы». Для грибов это выгодно, потому что что муравьи щедро удобряют землю.

Польза симбиоза

Микориза является средством связи между растениями.

Когда в окружающей среде появляется что-то, способное навредить растению, грибница посредством химический соединений «рассылает» информацию об этом другим грибам, и они встречают вредителя уже подготовленными. В некотором роде это напоминает передачу информации по нервной системе человека. Любой лес является гигантской информационной сетью.

Польза симбиоза заключается в следующем:

  1. Симбиоз помогает тем, что повышает адаптацию (особенно к неблагоприятным для условиям) организма к окружающей среде.
  2. С его помощью удастся увеличить урожай культурных растений.
  3. Благодаря симбиозу могут формироваться новые группы организмов (например, лишайники).

СИМБИОТ ВЕНОМ НА САМОМ ДЕЛЕ ГРИБ? | РЕАЛЬНАЯ ФАНТАСТИКА – ВЕНОМ 2018ВСЁ О СИМБИОТАХ | + ДЕТИ ВЕНОМА

Заключение

Симбиоз – важный процесс в природе, благодаря которому симбионты получают определенную выгоду. Существует большое многообразие видов таких организмов.

Источник: https://FermoVed.ru/gribyi/simbionty-primery.html

Удивительный симбиоз: грибы-паразиты и муравьи-зомби

Симбиоз грибов и животных
?

aleks070565 (aleks070565) wrote,
2019-07-19 11:42:00 aleks070565
aleks070565
2019-07-19 11:42:00 Category:

Наверное, в мире не существует человека, который ни разу в своей жизни не смотрел фильмы о зомби — мертвых существах, которые совершенно по разным причинам ожили и начали охотиться на живых созданий. Некоторым людям в это трудно поверить, что ожившие мертвецы реально существуют и представляют собой муравьев, зараженных паразитирующим грибком под названием кордицепс. Ранее ученые были уверены, что опасный грибок управляет телами насекомых проникая в их мозг, но все оказалось гораздо проще — он контролирует только мышцы.

Американские биологи узнали об этом, изучив поведение паразитирующего грибка вида Ophiocordyceps.

В ходе наблюдений они выяснили, что оказавшись на теле муравья, споры грибка пробивают его твердую оболочку и проникают внутрь насекомого, полного липким веществом.

В нем располагаются так называемые гифальные трубки, которые пронизывают все тело муравья и даже мышцы. Захватив контроль над мышцами, грибок может управлять движениями насекомого.

Грибок превращает насекомых в зомби

Используя микроскоп, ученые заметили, что грибок полностью уничтожает сарколемму — поверхность мышечных волокон.

При этом места соединения мышц с мозгом остаются целыми и невредимыми, и это говорит о том, что паразит каким-то образом все же взаимодействует с мозговыми импульсами.

Как именно это происходит, ученым пока не ясно, но зато они теперь точно знают, что превращение муравья в зомби происходит без непосредственного проникновения грибка в мозг.

Муравьиные мышцы, захваченные грибком-паразитом

Захватив контроль над телом муравья, грибок кордицепс заставляет его подняться на самую высокую ветку.

После достижения вершины происходит нечто еще более удивительное — повинуясь командам грибка, муравей кусает ветку с такой силой, что его голова разрывается на части.

Насекомое, разумеется, окончательно умирает, но споры паразитирующего гриба, накопившиеся в его голове, падают с высокой ветки вниз и заражают находящихся ниже муравьев.

То, что грибок превращает насекомых в зомби не воздействуя напрямую на мозг, а в первую очередь захватывая мышцы — большое научное открытие. Несмотря на это, паразитирующие грибы все равно остаются крайне загадочным царством живой природы с чертами как растений, так и животных.

Например, ученым до сих пор не ясно, почему внутри зараженных насекомых образуются маленькие пузырьки. Некоторые эксперты считают, что эти крохотные частички выделяют вещества, необходимые для управления чужими телами. Возможно, оно так и есть, но этот вопрос важно изучить подробнее.

Грибы-паразиты в России

Как бы неожиданно это не звучало, паразитирующие грибы существуют и в России. Их наверняка видел каждый — в лесу, на коре некоторых деревьев можно заметить довольно большие наросты. Ими являются грибы трутовики, которые хоть и не заражают людей и животных для последующего контролирования их тел, но все же являются паразитами.

Гриб трутовик

Споры этого грибка проникают внутрь дерева сквозь расщелины и распространяются по всей древесине, разрушая ее. Зараженные трутовиками деревья легко ломаются и, соответственно, живут не так долго, как могли бы.

Как появляются пауки-зомби?

В ходячих мертвецов могут превратиться не только насекомые, но и членистоногие пауки. Известно, что они превращаются в зомби после нападения особого вида ос, которые откладывают на их спинах яйца.

Вылупившиеся личинки впрыскивают в тела пауков вещество, которое заставляет их производить особенно прочный вид паутины, из которого плетется безопасный кокон для спокойного развития осиных личинок.

Зверюшное

  • На плановой учебной тренировке собаки из поисково-спасательной группы МЧС Приморья, Шон и Вольт, искали людей под завалами. Такие занятия…
  • Павлины в китайской живописи символизируют изящество, достоинство, бессмертие, величие, неподкупность, гордость, красота и благородство. Пара…
  • В Приморье на дорогу перед движущимся автомобилем выбежал медвежонок. Встреча с диким животным произошло в районе арт-парка «Штыковские…
  • Фотограф из Индии по имени Суприт Саху (Supreet Sahoo) живет в США, но его сердце принадлежит Латинской Америке. Он обожает фотографировать…
  • Учёные из Австралии нашли родственника динозавра, который дожил на нашего времени. Специалисты провели исследование и выяснили, что гаттерия…
  • с
  • Эти хитрые и деловые хищники обитают в лесах, степях и даже пустынях. Не раз заглядывают в огороды, сады и во дворы человека, чтобы чем-то…
  • В поселке Дагомыс в Сочи два медведя насмерть загрызли 11-летнего мальчика, который близко подошел к их вольеру. Мальчик гулял у реки и…
  • Каждый представитель семейства кошачьих – своенравный хозяин своей территории и искусный охотник, и герой сегодняшнего выпуска не…

Источник: https://aleks070565.livejournal.com/6462109.html

Самые необычные примеры симбиоза между животными и бактериями

Симбиоз грибов и животных

Симбиотические отношения в природе встречаются часто. Иногда они видны невооруженным глазом, как, например, абсолютная взаимозависимость между пчелами и цветущими растениями.

Однако, бывает и такой симбиоз, который невозможно разглядеть без микроскопа. Например, между животными и бактериями. И это могут быть очень интересные отношения.

Так как в обмен на уютную и безопасную среду обитания микробы дают своим компаньонам настоящие суперспособности, вроде неуязвимости к ядам или невидимости.

Тля

Это крошечное насекомое, которое высасывает жидкость из растений и распространяет между ними вирусы. Тля – опасный вредитель, но от этого она не становится менее замечательной с биологической точки зрения.

Во всем мире насчитывается более 4000 её видов, и она плодится где-то даже с абсурдной скоростью. Каждое насекомое может порождать 80 себе подобных каждые 10 дней. Тля способна к половому размножению, но большинство насекомых рождаются по существу уже беременными благодаря так называемому партеногенезу.

Эти кошмарные для любых демографов свойства позволяют ей губить огромное количество растений.

Однако рацион питания тли имеет существенный недостаток – в соках растений нет нужных насекомым аминокислот.

Естественным выходом здесь кажется более разнообразная диета, но тля нашла более творческое и эффектное решение – некоторые её виды вступили в симбиоз с бактериями, которые взяли производство этих веществ на себя.

Микробы принадлежат к роду Buchnera, и передаются тлей из поколения в поколение на стадии эмбрионов. Бактерии самостоятельно производят некоторые аминокислоты, например, триптофан. В других же случаях они генерируют их совместно с тлей.

По мнению учёных, эти партнёрские отношения начались 250 миллионов лет назад. Возможно, в результате того что бактерии, жившие в кишечнике тли, полностью отобрали у насекомых какие-то функции. И сегодня они уже не способны существовать друг без друга.

Бактерии позволяют тле выжить на пище, непригодной для любых других насекомых. А тля дает микробам пищу и безопасное место для жизни – у неё есть специальные клетки, бактериоциты, в которых, собственно, и размещаются их микроскопические друзья.

Эти отношения настолько успешны, что бактерии успели избавиться от значительной части своего генома, в том числе и от тех участков, что отвечают за реакцию на изменения окружающей среды и создание прочных стенок клеток.

Так как если у тебя уже есть хороший дом, и ты регулярно питаешься, то всё это не нужно. Сейчас у этих бактерий осталось всего около 500 генов, в то время как у их сородичей, обитающих в “дикой природе”, по крайней мере, 1500.

Так что если кто-то из ваших друзей пожалуется, что тля пожирает урожай и губит растения, знайте, там орудует целая банда.

Древесные крысы

Конкуренция за пищу может быть жесткой, особенно в суровых условиях пустыни. Там её вообще не очень много, а та, что есть, например, растения, совсем не стремятся быть съеденными.

У них очень часто серьёзная защита – шипы или яд, которые отпугивают большинство потенциальных клиентов. Возьмём, к примеру, куст креозота. Он содержит ядовитую смолу, которая может нанести очень серьёзные повреждения печени и почкам.

Однако некоторые животные относительно надёжно защищены от яда.

В течение многих десятилетий ученые фиксировали, что древесные крысы спокойно и без страха едят это растение. Это само по себе не странно. Есть животные, чьи организмы устойчивы к ядам. Для эволюции это нормально. Удивительным было то, что не все грызуны обладают этим иммунитетом, даже в пределах одного вида.

Крысы, обитающие в пустыне Мохаве, что в Южной Калифорнии, где куст креозота встречается сплошь и рядом, могли есть его в любых количествах. Однако их северные собратья, из пустыни Большого Бассейна, где это растение не встречается, почувствовали себя нехорошо и похудели, когда их накормили этим растением в лаборатории.

Учёным понадобилось более десяти лет, чтобы найти ответ на эту загадку.

В 2014 году в журнале “Ecology Letters” они рассказали, что между собой отличались не сами крысы, а их кишечные бактерии. Когда грызунам из пустыни Мохаве вводили антибиотики, их суперспособность исчезала, и они больше не могли безнаказанно питаться креозотовым кустом.

Когда же их кишечные бактерии были “пересажены” крысам из Большого Бассейна, те получили возможность есть это растение. Исследователи до сих пор не знают, какие именно микробы дарят животным столь потрясающий иммунитет. Креозотовая смола содержит сразу несколько токсинов, и вполне вероятно, что здесь работает целый комплекс бактерий.

Передаются они, видимо, посредством копрофагии. Не очень гигиенично, конечно, но для живой природы это не является чем-то исключительным.

Глубоководные моллюски

На планете Земля жизнь есть везде, в том числе и на дне океана. Впервые ученые увидели глубоководные гидротермальные жерла в 70-х годах прошлого века, и были поражены количеством и разнообразием живых существ вокруг этих “дымоходов”.

В частности, некоторые моллюски, относящиеся к семейству Vesicomyidae, оказались здесь гораздо более крупными, чем ожидалось.

Ведь, по сути, моллюски – это живые фильтры, питающиеся крошечными организмами, а на дне океана подобной еды не может быть много.

Сегодня уже известно, что эти моллюски процветают на глубине 6800 метров с помощью симбиотических бактерий. У Vesicomyidae очень большие жабры со множеством бактериоцитов, где обитают микробы, окисляющие серу из гидротермальных источников.

Извлекаемая энергия помогает питать обе стороны симбиоза. Как и в случае с тлёй, эти бактерии потеряли гены, связанные с клеточной структурой и способностью к самостоятельному перемещению, и не встречаются нигде за пределами жабр этих моллюсков.

Также как и тля, моллюски приобретают бактерии ещё до своего рождения. Микробы входят в состав их яиц. Мало кто из живых существ способен выжить на дне океана, во многих километрах от солнечного света.

Однако симбиоз с бактериями, как видим, способен обеспечить некоторым из них довольно комфортную нишу для существования.

Синекольчатый осьминог

Еще один обитатель океана, обладающий сверхспособностью. Это невероятно милое существо. Оно весит менее тридцати граммов и спокойно помещается в человеческую ладонь.

Но брать его в руки не стоит, ведь это одно из самых ядовитых животных на планете. Его яд содержит тетродотоксин (ТТХ), который в тысячу раз мощнее цианида. Он блокирует натриевые каналы нервных клеток, парализуя мышцы.

Это, помимо прочего, ведёт к дыхательному параличу, смерть от которого наступает в течение нескольких минут.

Столь сильный яд – это абсолютное излишество для осьминога, ведь он использует его на небольших крабах и моллюсках. Но это так, лирическое отступление. Самое интересное в этом существе то, что само оно не производит никаких токсинов. По мнению учёных, это делают симбиотические бактерии, обитающие в его слюнных железах.

Справедливости ради стоит отметить, что споры на этот счёт ещё продолжаются, и не всем исследователям удалось вырастить микробов, производящих TTX, из этих желез.

Тем не менее, бактерии, генерирующие тетродотоксин, науке известны, и в данном случае, вероятнее всего, синекольчатые осьминоги вступили в симбиоз сразу с несколькими из них.

Пока неясно, как началось это партнерство и какие преимущества получают бактерии. Жизнь внутри осьминога, вероятно, дает им защиту от хищников, что является несомненным плюсом. Что касается осьминога, то у него развилась устойчивость к действию яда. Натриевые каналы его нервных клеток трансформировались, и TTX на них больше не действует. То же самое наблюдается, допустим, у рыбы фугу.

Гавайский кальмар бобтейл

zagony.ru

Жизнь в океане полна опасностей, в том числе и для гавайского кальмара бобтейла. Это существо имеет всего около 3 сантиметров в длину, поэтому является отличной закуской для более крупных хищников.

Питается он ночью, что также весьма рискованно. Свет звезд и Луны освещает океанскую воду, благодаря чему силуэты кальмаров хорошо видны охотникам, находящимся ниже их в воде.

Но ровно до тех пор, пока бобтейл не станет невидимым благодаря помощи биолюминесцентных бактерий Vibrio fischeri.

zagony.ru

Они находятся внутри особого светового органа, расположенного в мантии – верхнем покрове, чем-то напоминающем шляпу. Ночью светящиеся бактерии имитируют свет, что делает их хозяина невидимым, если смотреть на него снизу.

В ходе научных экспериментов ученые доказали, что кальмар с помощью специальных тканей своего тела может регулировать количество испускаемого света.

Бобтейлы не рождаются с этими бактериями, как некоторые предыдущие фигуранты сегодняшнего рассказа, однако Vibrio fischeri в изобилии водятся в их среде обитания. Прогоняя воду через свой организм, кальмар задерживает их в особой слизи своего “фонаря”.

То есть это не те гармоничные отношения, которые мы встречали ранее. Чтобы не допустить излишнего размножения микробов, головоногие каждое утро выбрасывают в океан до 90% их количества.

Однако та часть, что остаётся, чувствует себя в безопасности. Есть даже некоторые свидетельства того, что кальмары подкармливают их, так как к наступлению темноты их численность увеличивается.

Примечательно, что Vibrio fischeri являются близкими родственниками болезнетворных бактерий, в том числе тех, которые вызывают холеру. Ученые проводят исследования, пытаясь выяснить, каким образом у этих микробов могли сложиться столь тесные отношения с бобтейлом.

В идеале, это поможет ответить на вопрос, что делает те или иные бактерии полезными или, наоборот, опасными.

Источник: https://vitas1917.livejournal.com/1068203.html

Как грибы вступают в симбиоз: примеры микоризы с корнями деревьев, водорослями и другими организмами

Симбиоз грибов и животных

Фото симбиоза грибов с корнями

Ярким примером симбиоза грибов является микориза — содружество грибов и высших растений (различных деревьев). При таком «сотрудничестве» выигрывает и дерево, и гриб.

Поселяясь на корнях дерева, гриб выполнят функцию всасывающих волосков корня, и помогает дереву усваивать питательные вещества из почвы.

При таком симбиозе от дерева гриб получает готовые органические вещества (сахара), которые синтезируются в листьях растения при помощи хлорофилла.

Кроме того, при симбиозе грибов и растений грибница вырабатывает вещества типа антибиотиков, которые защищают дерево от различных болезнетворных бактерий и патогенных грибов, а также стимуляторы роста типа гиббереллина. Отмечено, что деревья, под которыми растут шляпочные грибы, практически, не болеют. Кроме того, дерево и гриб активно обмениваются витаминами (в основном, группы В и РР).

Многие шляпочные грибы образуют симбиоз с корнями различных видов растений. Причем установлено, что каждый вид дерева способен образовать микоризу не с одним видом гриба, а с десятками разных видов.

Лишайники: в чем проявляется симбиоз грибов и водорослей

На фото Лишайник

Другим примером симбиоза низших грибов с организмами других видов являются лишайники, которые представляют собой союз грибов (в основном аскомицетов) с микроскопическими водорослями. В чем же проявляется симбиоз грибов и водорослей, и как происходит такое «сотрудничество»?

До середины XIX века считалось, что лишайники являются отдельными организмами, но в 1867 году русские ученые-ботаники А. С. Фаминцын и О. В. Баранецкий установили, что лишайники — не отдельные организмы, а содружество грибов и водорослей.

От этого союза выигрывают оба симбионта.

Водоросли с помощью хлорофилла синтезируют органические вещества (сахара), которыми питается и грибница, а грибница снабжает водоросли водой и минеральными веществами, которые она высасывает из субстрата, а также защищает их от высыхания.

Благодаря симбиозу гриба и водоросли лишайники живут в таких местах, где не могут отдельно существовать ни грибы, ни водоросли. Они заселяют знойные пустыни, высокогорные районы и суровые северные регионы.

Лишайники являются еще более загадочными созданиями природы, чем грибы. В них меняются все функции, которые присущи отдельно живущим грибам и водорослям.

Все процессы жизнедеятельности в них протекают очень медленно, они медленно растут (от 0,0004 до нескольких мм в год), и так же медленно старятся.

Эти необычные создания отличаются очень большой продолжительностью жизни — ученые предполагают, это возраст одного из лишайников в Антарктиде превышает 10 тысяч лет, а возраст самых обычных лишайников, которые встречаются везде, не менее 50-100 лет.

Лишайники благодаря содружеству грибов и водорослей намного выносливее мхов. Они могут жить на таких субстратах, на которых не могут существовать ни один другой организм нашей планеты. Их находят на камне, металле, костях, стекле и многих других субстратах.

Лишайники до сих пор продолжают удивлять ученых. В них обнаружены вещества, которых больше нет в природе и которые стали известны людям только благодаря лишайникам (некоторые органические кислоты и спирты, углеводы, антибиотики и др.).

В состав лишайников, образованных симбиозом грибов и водорослей, также входят дубильные вещества, пектины, аминокислоты, ферменты, витамины и многие другие соединения. Они накапливают различные металлы.

Из более 300 соединений, содержащихся в лишайниках, не менее 80 из них нигде больше в живом мире Земли не встречаются. Каждый год ученые находят в них все новые вещества, не встречающиеся больше ни в каких других живых организмах.

В настоящее время уже известно более 20 тысяч видов лишайников, и ежегодно ученые открывают еще по несколько десятков новых видов этих организмов.

Из этого примера видно, что симбиоз не всегда является простым сожительством, а иногда рождает новые свойства, которых не было ни у одного из симбионтов в отдельности.

В природе таких симбиозов великое множество. При таком содружестве выигрывают оба симбионта.

Установлено, что стремление к объединению больше всего развито у грибов.

Симбиоз грибов с насекомыми

Вступают грибы в симбиоз и с насекомыми. Интересным содружеством является связь некоторых видов плесневых грибов с муравьями-листорезами. Эти муравьи специально разводят грибы в своих жилищах.

В отдельных камерах муравейника эти насекомые создают целые плантации этих грибов.

Они специально готовят почву на этой плантации: заносят кусочки листьев, измельчают их, «удобряют» своими испражнениями и испражнениями гусениц, которых они специально содержат в соседних камерах муравейника, и только потом вносят в этот субстрат мельчайшие гифы грибов. Установлено, что муравьи разводят только грибы определенных родов и видов, которые нигде в природе, кроме муравейников, не встречаются (в основном, грибы родов фузариум и гипомицес), причем, каждый вид муравьев разводит определенные виды грибов.

Муравьи не только создают грибную плантацию, но и активно ухаживают за ней: удобряют, подрезают и пропалывают. Они обрезают появившиеся плодовые тела, не давая им развиться.

Кроме того, муравьи откусывают концы грибных гиф, в результате чего на концах откусанных гиф скапливаются белки, образуются наплывы, напоминающие плодовые тела, которыми муравьи затем питаются и кормят своих деток.

Кроме того, при подрезании гиф мицелий грибов начинает быстрее расти.

«Прополка» заключается в следующем: если на плантации появляются грибы других видов, муравьи их сразу удаляют.

Интересно, что при создании нового муравейника будущая матка после брачного полета перелетает на новое место, начинает копать ходы для жилища будущей своей семьи и в одной из камер создает грибную плантацию. Гифы грибов она берет из старого муравейника перед полетом, помещая их в специальную подротовую сумку.

Подобные плантации разводят и термиты. Кроме муравьев и термитов, «грибоводством» занимаются жуки-короеды, насекомые-сверлильщики, некоторые виды мух и ос, и даже комары.

Немецкий ученый Фриц Шаудин обнаружил интересный симбиоз наших обычных комаров-кровососов с дрожжевыми грибками актиномицетами, которые помогают им в процессе сосания крови.

Источник: https://babushkinadacha.ru/griby/simbioz-gribov-s-rasteniyami-i-drugimi-organizmami.html

Симбиозы у растений

Симбиоз грибов и животных

Древесные и другие представители флоры способны устанавливать между собой взаимовыгодные отношения.

Формы таких положительных контактов многообразны и чрезвычайно разнородны – от косвенных и временных взаимодействий до тесного постоянного сожительства, когда сосуществование с соседом является необходимым условием для жизни. Каким же образом растения оказывают друг другу помощь и поддержку?

Желательно и обязательно

Отношения, при которых растительные организмы получают обоюдную выгоду, можно отнести к мутуалистическим (мутуализм – от лат. mutuus – «взаимный»). Обычно разделяют факультативный и облигатный (от лат. obligatus – «непременный», «обязательный») мутуализм.

  • В первом случае взаимное сотрудничество помогает выживанию, но не является обязательным для организмов.
  • Во втором – сотрудничество жизненно необходимо для обоих партнеров-участников.

Если при этом сосуществующие партнеры неразделимы и зависят друг от друга, то подобные связи называют симбиотическими (симбиоз – от греч. symbiosis – «совместная жизнь»).

Совместная жизнь

Характерным примером тесного симбиоза является сожительство гриба и водоросли, в результате которого образуется единый организм – лишайник. Гифы грибов оплетают клетки и нити водорослей, получая органические питательные компоненты, ассимилированные партнером.

В свою очередь грибы поставляют водорослям воду и минеральные вещества, смягчают действие неблагоприятных факторов (защищают от пересыхания, экранируют УФ-излучение). Считается, что такой тип связей эволюционно возник как следствие паразитизма грибов на водорослях.

Тем не менее взаимоотношения «сожителей» тонко сбалансированны и согласованны и в результате приносят взаимную пользу, что говорит об успехе такого способа сосуществования.

Эпифитные лишайники

Широко известен симбиоз между грибным мицелием и корнями высших растениймикориза.

При взаимодействии гиф гриба и клеток корня всасывающая поверхность корневой системы многократно увеличивается, что способствует более интенсивному поступлению питательных веществ и воды из почвы и (как следствие) лучшему развитию растения-хозяина. В ответ гриб получает от растительного организма углеводы, витамины, фитогормоны и т. п.

Кроме того, сами микоризообразующие грибы синтезируют многие биологически активные вещества, используемые растениями, переводят в растворимую форму трудноусвояемые почвенные соединения фосфора, защищают корни от заражения потенциальными патогенами, участвуют в обмене метаболитами между растениями.

В настоящее время микоризообразование выявлено практически для всех голосеменных и большинства покрытосеменных.

Многие растения (орхидные, грушанковые, некоторые вересковые и древесные) без микоризы развиваются очень плохо либо не развиваются вообще, особенно на бедных почвах. У черники и брусники грибы-микоризообразователи находят даже в зародышах семян.

В целом микориза не только помогает стратегии выживания отдельных растительных организмов, но и объединяет их в единое целостное сообщество.

Еще один классический пример тесных мутуалистических отношений в фитоценозе – симбиоз растений (например, бобовых и мимозовых – около 90 % изученных видов) с азотфиксирующими бактериями, способными усваивать атмосферный азот и переводить его в доступную для высших растений форму. Колонии бактерий поселяются на корневых волосках растения-хозяина, вызывая разрастание тканей корня с образованием утолщений – клубеньков. В результате такого «сожительства» бактериям достаются растительные ассимиляты, а к растениям поступает фиксированный азот (чаще всего в виде аспарагина).

Аналогичные симбиотические связи с корнями различных деревьев и кустарников образуют актиномицеты. Симбиоз с азотфиксирующими микроорганизмами дает возможность растениям-партнерам успешно расти в условиях азотного дефицита (например, на торфяниках или песчаных участках).

Срастание корней дает деревьям возможность обмениваться между собой влагой, минеральными и органическими веществами

Часто у близко растущих деревьев (одного вида или близкородственных) наблюдают срастание корней, что дает им возможность обмениваться между собой влагой, минеральными и органическими веществами. Такой своеобразный симбиоз делает их более устойчивыми к засухе, морозу, повреждению насекомыми и т. д.

При отмирании надземных частей у отдельных деревьев их сохранившаяся корневая система используется соседними, что улучшает рост и устойчивость всей группы в целом. После вырубок в таких случаях могут образовываться «живые» пни, у которых длительное время сохраняется камбиальный прирост.

Срастание корневых систем выявлено у деревьев разных возрастов, причем у представителей как голосеменных, так и покрытосеменных.

Наиболее часто это явление отмечают для березы повислой, ясеня зеленого, дуба черешчатого, вяза обыкновенного, клена остролистного, различных хвойных – сосны, ели, лиственницы, пихты. Корневое срастание характерно также для плодовых (груши, яблони, сливы, рябины).

Садоводы создают искусственные системы «многокорневых» деревьев за счет прививок корней для улучшения роста и повышения урожайности.

Сотрапезники

В растительных сообществах не менее распространен еще один тип положительных связей – комменсализм (от позднелат.

commensalis – «сотрапезник»), когда одни из взаимодействующих партнеров получают пользу от «сожительства», а другим это безразлично. Обычно один из организмов при этом использует соседа в качестве среды обитания и источника питания.

Подобные формы взаимоотношений характерны для эпифитов, лиан, почвенных и наземных сапрофитов.

Сапрофитная гнездовка обыкновенная

Эпифиты развиваются на поверхности древесных стволов и ветвей, используя их только как место поселения. Благодаря этому они избавлены от конкуренции за свет и питательные компоненты со стороны растений, живущих на поверхности почвы.

В отличие от паразитов, эпифиты не вступают в прямой физиологический контакт с растением-субстратом. Они питаются за счет отмирающих тканей и выделений растения-хозяина или за счет фотосинтеза, а влагу получают из воздуха и осадков.

Часто их корни образуют микоризу с грибами.

В наших широтах такая форма сосуществования характерна в основном для мхов, лишайников, некоторых папоротников, водорослей, цветковых. При чрезмерном разрастании они могут способствовать подгниванию тканей хозяина.

Эпифитные мхи

К лианам относят вьющиеся растения со слабыми однолетними или многолетними стеблями. Среди лиан встречаются как деревянистые, так и травянистые формы.

Они используют деревья и кустарники в качестве опоры и поднимаются по ним достаточно высоко, используя усики, придаточные корни, колючки.

Для лиан характерны длинные и крупные водоносные сосуды, что связано с необходимостью «перекачивать» значительные объемы воды в крону на достаточно большую высоту.

Древесные виды могут развивать мощную крону и отличаются долголетием (например, винограды доживают до 200 лет). Лианы обычно занимают малую площадь на поверхности почвы, многие обладают красивыми цветками и листвой, некоторые плодоносят.

Благодаря этим качествам их широко используют как декоративные растения для озеленения в искусственных насаждениях. В наших широтах с умеренным климатом наиболее часто высаживают актинидию, лимонник, различные виды винограда, плющи, хмель.

Сапрофиты живут (частично или полностью) за счет питания органическим веществом отмерших организмов. В основном представлены грибами, бактериями, актиномицетами.

Редко встречаются среди цветковых (некоторые представители семейств грушанковых, орхидных), мхов, папоротников.

Примером цветковых растений, перешедших на гетеротрофное питание, являются сапрофиты хвойных лесов – подъельник обыкновенный, надбородник безлистый.

Сапрофиты играют важную роль в жизни лесного сообщества, разлагая мертвые растительные остатки и переводя сложные органические соединения в более простые формы, тем самым способствуя повышению плодородия почвы.

Древесные помогают друг другу

Помимо прямых контактных отношений для растений не менее важны опосредованные, косвенные взаимодействия.

Наиболее распространенный тип подобных положительных связей – влияние одних растений на другие через улучшение условий их совместного обитания: изменение температурных режимов, влажности воздуха и почвы, направления и скорости ветра, интенсивности освещенности, изменение почвенного состава за счет опада и химических выделений. Такой тип взаимопомощи наиболее характерен для древесных.

Так, примесь бука в сосновых и дубовых культурах на песках и супесях повышает плодородие почв и способствует улучшению роста основной породы.

Присутствие лиственницы в дубравах повышает влажность верхних слоев почвы, способствует увеличению количества подвижного фосфора, калия.

Кроме того, в северных районах произрастания дуба лиственница предохраняет его от заморозков, не создавая при этом сильного затенения. Еще одним хорошим «другом» для дуба может быть липа. В опаде липы содержится много азота, фосфора, кальция.

Быстрое истребление опада дождевыми червями ускоряет переход этих веществ в усвояемую для деревьев форму. Чем ниже плодородие почвы и хуже ее физические свойства, тем значительнее положительный эффект от липы.

Позитивны взаимоотношения дуба и граба, особенно в кальцефильных условиях, где сказывается подкисляющее влияние грабового опада.

Высокой способностью удобрять почву, аккумулируя в лесной подстилке запасы питательных компонентов, обладают также черемуха, береза, бузина, лещина, клен – их опад дает наибольшее количество минеральных веществ.

По признанию энтомологов, в смешанных сосново-березовыхдревостоях сосна меньше страдает от вредителей (пилильщика, соснового шелкопряда и подкорного клопа), чем в чистых сосняках.

По-видимому, это связано с более неблагоприятными условиями перезимовки насекомых в подстилке, состоящей из смеси опада березы и сосны.

В чистых сосняках, по сравнению с сосново-лиственными, быстрее распространяется корневая губка.

Наличие подлеска на засушливых участках способствует затенению почвы, защите ее от пересушивания, от чрезмерного задернения и зарастания травами.

Береза в заболоченных местах улучшает условия произрастания соседних пород (например, сосны). Корни березы больше приспособлены к плохим условиям аэрации и могут проникать в более глубокие почвенные горизонты, помогая интенсивно отсасывать избыточную влагу.

Показано, что присутствие азотсобирателей в фитоценозе – белой и желтой акации, черной и серой ольхи, лоха, облепихи и других пород – приводит к увеличению количества азота в почве и способствует более интенсивному развитию соседних деревьев. Типичный случай такого благоприятствования – увеличение в 2–3 раза прироста у тополя, растущего рядом с ольхой. Корни тополя эффективно используют выгодное соседство, проникая в желваки на корнях ольхи и получая дополнительное азотное питание.

Еще один пример – соседство ясеня с ольхой черной и с лиственницей.

Ясень является нитро- и фосфорофилом, а ольха и лиственница как раз обогащают почву соответственно азотом и фосфором.

Способности азотсобирателей к обогащению почв также широко используют при создании долговечных декоративных насаждений, в лесоводстве и сельскохозяйственной практике.

Лиственница в дубравах повышает верхних слоев слоев почвы, способствует увеличению количества подвижного фосфора и калия

Нередко взрослые растения одного вида помогают возобновлению и росту молодняка других пород. Так, осину считают деревом-нянькой по отношению к подросту ели.

Под более светлой кроной осины возобновление и развитие еловой поросли происходит с меньшими потерями. Кроме того, листья осины разлагаются быстрее, чем листья многих других пород, и хорошо обогащают почву.

Наконец, корни ели получают возможность значительно углубляться в почву по ходам, образовавшимся от сгнивших корней осины.

В косвенных положительных взаимоотношениях с древесными растениями нередко участвуют микроорганизмы.

Микоризообразование у древесных может способствовать изменению состава почвы и ее кислотности, создавая благоприятные условия для поселения различных бактерий (в частности, PGPRP – от Plant Growth Promotion Rhizosphere Pseudomonas.

), которые питаются выделениями корней и микоризообразующих грибов. В свою очередь бактерии синтезируют соединения с антибиотической активностью, защищая соседей от патогенов.

Все представленные типы положительных связей можно обнаружить в любом растительном сообществе, при этом формы взаимодействия растений очень динамичны и могут меняться в зависимости от этапов их развития, смены условий окружающей среды, при появлении новых партнеров. Один и тот же растительный организм одновременно может находиться в различных (порой совершенно противоположных) отношениях с соседями: с одними – в комменсалистских, с другими – в симбиотических, с третьими – в конкурентных и т. д.

Чем разнообразнее и долговечнее сотрудничество, поддерживающее совместную жизнь растений, тем продуктивнее их сожительство. Обычно со временем отбираются комбинации видов с максимальной взаимной приспособленностью, наиболее соответствующие конкретным условиям обитания.

Именно поэтому, как правило, естественные лесные сообщества, имеющие длительную историю постепенного развития, гораздо устойчивее тех, которые создаются человеком (парков, ландшафтных садов, пр.).

Формирование жизнеспособных искусственных насаждений наиболее вероятно в тех случаях, когда подбор растений для них максимально приближен к природным сочетаниям с преобладанием взаимопомощи, а не борьбы.

_______________________________________________

Актиномицеты — бактерии, имеющие способность к формированию на некоторых стадиях развития ветвящегося мицелия.

Источник: https://givoyles.ru/articles/nauka/simbiozy-u-rastenii/

Будущему агроному
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: